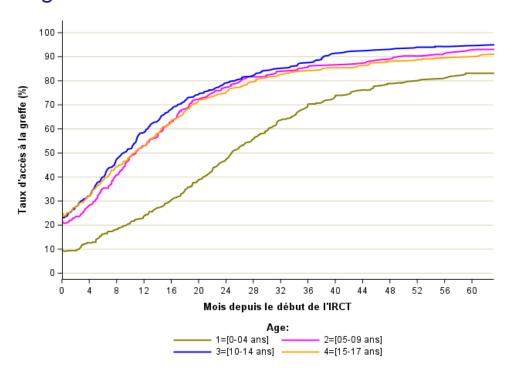

Challenges du parcours de soins Néonatal en Néphrologie

Les chiffres clefs de la MRC stade 5 chez l'enfant

- L'âge médian de 13 ans
- 60 % sont des garçons
- < 20% de greffe préemptive
- 35% démarrent en DP (10% chez les adultes)
- 30% démarrent la dialyse en urgence
 - 20 % des cas via un passage par réanimation (9% chez les adultes)

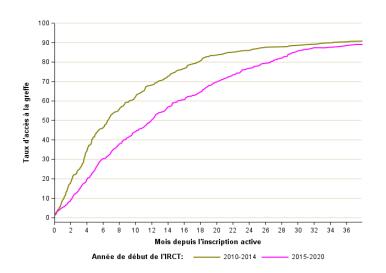
Evolution de la modalité de traitement initiale



la greffe rénale = meilleur traitement de suppléance

- Délai médian d'accès à la greffe de 10 mois (maximum 168 mois)
- Les patients < 4 ans ont une cinétique d'accès plus lente
 - poids limite 10 kg attendu avant d'envisager la greffe
 - deux ans après, probabilité inférieure d'être greffés

Taux d'incidence cumulée pour l'accès à la greffe entre 2005 et 2021



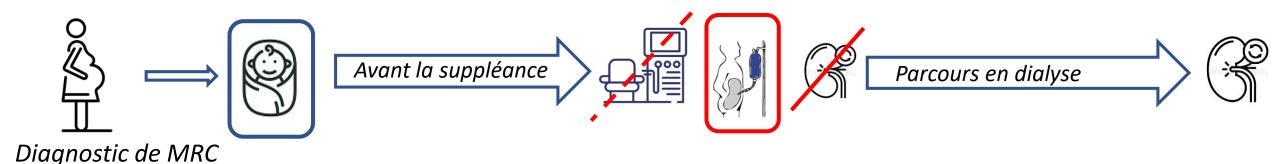
la greffe rénale = meilleur traitement de suppléance

- Délai médian d'accès à la greffe de 10 mois (maximum 168 mois)
- Les patients < 4 ans ont une cinétique d'accès plus lente
 - poids limite 10 kg attendu avant d'envisager la greffe
 - deux ans après, probabilité inférieure d'être greffés

Depuis 2015 accès plus lent à la greffe

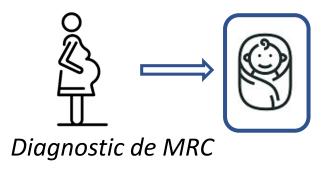
Taux d'incidence cumulée pour l'accès à la greffe entre 2005 et 2021

Parcours de soins des enfants avec une M.Rénale Chronique



Avant la suppléance

Les challenges du tout petit



Les challenges du tout petit

- Diagnostic initial en anténatal
- Prise en charge initiale en réanimation
 - pronostic respiratoire (hypoplasie pulmonaire secondaire à l'anamios / olygoamios)
- Prise en charge pluridisciplinaire ++
- Pas de greffe préemptive
- équilibre de la dialyse du tout petit : limite du choix des techniques (DP+++)

Les challenges du tout petit

- 2/3 garçons
- En anténatal : facteur de risque de décès = Oligoamnios avant 32SA*
- Diagnostic : CAKUT / hypoplasie rénale bilatérale / néphropathies génétiques
- 10 à 15% de comorbidités ou handicap associé

Le parcours de soins en dialyse chez le tout petit quelques chiffres clefs

Données non publiées

<5 ans entre 2008-2020</pre>

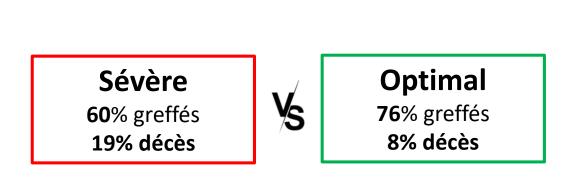
- 262 enfants avec un âge médian de 18 mois
- 7147 hospitalisations (12 Hospit / patient / an)
- 2/3 des patients auront au moins une hospitalisation en réanimation
- 27% auront au moins 1 switch de modalité de dialyse

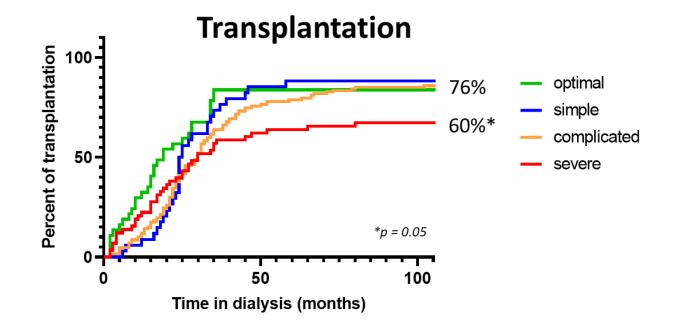
trajectoires compliquées et sévères ≈ 75%

Trajectoires en dialyse Switch de modalité de dialyse Hospitalisation en réanimation Hospitalisation pour complications

Optimale N = 37 (14%)
0
0
0

Simple N = 34 (13%)
0
0
< 2 / an

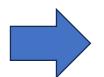

Compliquée N = 127 (49%)
1
< 2 / an
> 2 / an


Le parcours de soins en dialyse chez le tout petit

Durée médiane du parcours de soins 22 mois

- Hospitalisation les + fréquentes = motif infectieux / catheter
 - Péritonite (39%), sepsis (15%)
 - Catheter 27%
- < 2 ans sont plus fréquemment hospitalisés + motifs spécifiques hypovolémie / dénutrition

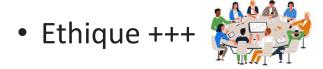
Challenge: la chirurgie


- Exemple : valves de l'urètre postérieur
- Urgence néonatale
- Incidence: 1:3 000 à 1:8 000 naissances.
- Accessible à un diagnostic prénatal

Challenge: la chirurgie

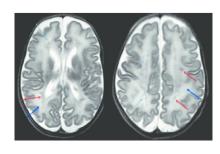
- Exemple : valves de l'urètre postérieur
- Urgence néonatale
- Incidence: 1:3 000 à 1:8 000 naissances.
- Accessible à un diagnostic prénatal

Nécessité de matériel adapté et d'une équipe chirurgicale entrainée

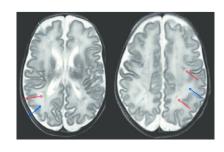

Challenge: prise en charge médicale

- Dialyse néonatale : 0.5%-1% des nouveaux-nés admis en NICU.
- Résultats comparables aux grands enfants (en l'absence de dysfunction d'autres organes).

Challenge: prise en charge médicale


- Dialyse néonatale : 0.5%-1% des nouveaux-nés admis en NICU.
- Résultats comparables aux grands enfants (en l'absence de dysfunction d'autres organes).

Challenge: prise en charge médicale


- Dialyse néonatale : 0.5%-1% des nouveaux-nés admis en NICU.
- Résultats comparables aux grands enfants (en l'absence de dysfunction d'autres organes).
- Ethique +++
- Discussion multidisciplinaire :
 - Comorbidités
 - Irréversibilité des lésions

Challenge : prise en charge médicale

- Dialyse néonatale : 0.5%-1% des nouveaux-nés admis en NICU.
- Résultats comparables aux grands enfants (en l'absence de dysfunction d'autres organes).
- Ethique +++
- Discussion multidisciplinaire :
 - Comorbidités
 - Irréversibilité des lésions
 - Parcours de soins prévisible

Avant la suppléance

Challenge : prise en charge médicale

Clin Perinatol. 2012 March; 39(1): 61-68. doi:10.1016/j.clp.2011.12.003.

Antibiotic Use and Misuse in the Neonatal Intensive Care Unit

Nidhi Tripathi, BSa,b, C. Michael Cotten, MD, MHSc, and P. Brian Smith, MD, MPH, MHSb,c Nidhi Tripathi: nidhi.tripathi@duke.edu; C. Michael Cotten: michael.cotten@dm.duke.edu; P. Brian Smith:

^aDuke University School of Medicine, Durham, NC 27710

REVIEW published: 07 April 2022 doi: 10.3389/fped.2022.842544

Neonatal Acute Kidney Injury

Cassandra Coleman¹, Anita Tambay Perez², David T. Selewski² and Heidi J. Steflik^{1*}

Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States, ² Division of Pediatric Nephrology, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States

TABLE 3 | Nephrotoxic medications frequently used in neonates.

Medication	Mechanism of action	Site of kidney damage	Nephrotoxicity	Notes
Acyclovir	Inhibits DNA synthesis and viral replication <i>via</i> inhibition of viral DNA polymerase	Tubule	Crystallization and obstruction occur causing tubular damage, particularly when in low urinary flow state	Can be used for prophylaxis (CMV, HSV, varicella, herpes zoster), suppression (HSV), and treatment (varicella zoster, herpes zoster, HSV, varicella). Dosage adjustment for renal impairment available (93).
Amikacin	Inhibits protein synthesis <i>via</i> binding to 30S ribosomal subunits	Proximal tubule, S1 and S2 segments, late changes in S3	Proximal tubular damage after accumulation of aminoglycoside	Dosage adjustment for renal impairment as well as augmented renal clearance available (93).
Amphotericin B	Disrupts fungal cell wall synthesis and cell membrane permeability via binding to ergosterol which causes leakage of cellular components and subsequent cell death	Distal tubule	Vasoconstriction and direct distal tubular toxicity	Hydration and sodium repletion prior to administration of amphotericin B may reduce risk of renal toxicity. Dosage adjustment for renal impairment available (93).
Gentamicin	Disrupts bacterial protein synthesis and cell membrane integrity via biding to 30S ribosomal subunit	Proximal tubule, S1 and S2 segments, late changes in S3	Proximal tubular damage after accumulation of aminoglycoside	Dosage adjustment for renal impairment available (93).
Indomethacin	Non-selective cyclooxygenase inhibitor decreasing prostaglandin synthesis	Afferent arteriole	Hemodynamically mediated: causes afferent arteriole vasoconstriction and reduced GFR	Dosage adjustment for renal impairment available (93).
Piperacillin/Tazobactam	Inhibits bacterial cell wall synthesis leading to bacteria lysis	Tubule, particularly proximal tubule	Inhibits tubular secretion and clearance, direct toxicity	Dosage adjustment for renal impairment available (93).
Vancomycin	Inhibits cell wall synthesis of gram-positive bacteria <i>via</i> blocking glycol-peptide polymerization	Proximal tubule	Direct toxicity, otherwise unclear	Dosage adjustment for renal impairment available (93).

DNA, deoxyribonucleic acid; CMV, cytomegalovirus; HSV, herpes simplex virus; GFR, glomerular filtration rate.

Challenge : défi de l'épuration

- Mêmes générateurs que chez l'adulte
- Seuls certains générateurs acceptent les lignes à sang de petit volume destinés aux enfants <15 kg
- Le volume du circuit extra corporel =

lignes à sang (ligne artérielle + ligne veineuse)

volume de l'hémodialyseur

doit être < 8 à 10 ml/kg

Table 1. Volume extracoporel minimal, précision de l'ultrafiltration, certification et disponibilité des principales machines de dialyse chronique dans les pays riches

Machines	Plus petit volume de ligne (ml)		Plus petit volume extracorporel (circuit + dialyseur) (ml)		<u>Précision</u> de <u>l'ultrafiltration</u>	Plus petit poids permis (kg) (organisme	Pays où la machine est disponible
	Double aiguille	Aiguille unique	Double aiguille	Aiguille unique		certififiant)	чізропіліс
Baxter AK98	36	132	53	149	± 50 ml/h**	≥ 25 (CE, FDA)	Australie, Canada, CE, USA
Baxter Artis Physio	132	227	149	244	± 50 ml/h**	≥ 25 (CE)	Australie, Canada, CE
Braun Dialog įQ	122	186	139	203	± 1% of UF plus ± 0.2% of dialysate flow	≥ 30 (CE, FDA)	<u>Australie,</u> Canada, CE
Fresenius 2008	78	185	95	202		≥ 20 (FDA)	USA, Canada
Fresenius 4008	56	88	73	105	± 1% of UF plus ± 0.1% of dialysate	≥ 15 (Fresenius)	Australie, CE
Fresenius 6008	83	187	100	204	flow	≥ 10 (CE) ≥ 40 en aiguille unique (<u>Frésénius</u>)	Australie, CE
Medtronic Flexya	139	169	156	186	± 1% of UF	≥ 30 (Medtronic)	CE
Nikkiso DBB-EXA	143	202	160	219	± 30 ml/h*	≥ 20 (CE)	Australie, Canada, CE, USA
Nikkiso DBB-200Si	74	124	91	141	± 30 ml/h*	≥ 20 (Nikkiso)	Japon
Nipro Surdial-X and DX	132	231	149	248	± 30 ml/h	≥ 30 (CE, FDA)	Australie, CE, Japon, USA

Review > Pediatr Nephrol. 2023 Dec 23. doi: 10.1007/s00467-023-06233-0. Online ahead of print.

Technical requirements and devices available for long-term hemodialysis in children-mind the gap!

Bruno Ranchin ^{1 2}, Claus Peter Schmitt ³, Bradley A Warady ⁴, Hiroshi Hataya ^{5 6}, Joanne Jones ⁷, Rowena Lalji ^{8 9 10}, Christoph Licht ^{11 12}, Melodie Mosca ¹³, Lynsey Stronach ¹⁴, Enrico Vidal ¹⁵, Johan Vande Walle ¹⁶, Rukshana Shroff ¹⁴

CE: <u>Communauté Européenne</u>; FDA: US Food and Drug Administration; Fresenius Medical Care AG & Co., Bad Homburg <u>vor</u> der <u>Höhe</u>, <u>Allemagne</u>; Nikkiso Co., Tokyo, <u>Japon</u>; Baxter Healthcare, Deerfield, *Illinois*, USA; B. Braun <u>Avitum</u> AG <u>Melsungen</u>, <u>Allemagne</u>; <u>Nipro</u> corporation, Osaka, <u>Japon</u>; Medtronic, Dublin, <u>Irlande</u>

^{*}Avec un debit dialysat de 300-500ml/min, **ou ±2.5% du volume cumulé d'UF, selon ce qui est le plus important.

Table 1. Volume extracoporel minimal, précision de l'ultrafiltration, certification et disponibilité des principales machines de dialyse chronique dans les pays riches

Machines		it volume ne (ml) Aiguille	extrac (circ	it volume orporel cuit + ur) (ml)	<u>Précision</u> de l'ultrafiltration	Plus petit poids permis (kg) (organisme certififiant)	Pays où la machine est disponible
	aiguille	unique	aiguille	unique		3.2	
Baxter AK98	36	132	53	149	± 50 ml/h**	≥ 25 (CE, FDA)	Australie, Canada, CE, USA
Baxter Artis Physio	132	227	149	244	± 50 ml/h**	≥ 25 (CE)	Australie, Canada, CE
Braun Dialog iQ	122	186	139	203	± 1% of UF plus ± 0.2% of dialysate flow	≥ 30 (CE, FDA)	Australie, Canada, CE
Fresenius 2008	78	185	95	202		≥ 20 (FDA)	USA, Canada
Fresenius 4008	56	88	73	105	± 1% of UF plus ± 0.1% of dialysate	≥ 15 (Fresenius)	Australie, CE
Fresenius 6008	83	187	100	204	flow	≥ 10 (CE) ≥ 40 en aiguille unique (Frésénius)	Australie, CE
Medtronic Flexya	139	169	156	186	± 1% of UF	≥ 30 (Medtronic)	CE
Nikkiso DBB-EXA	143	202	160	219	± 30 ml/h*	≥ 20 (CE)	Australie, Canada, CE, USA
Nikkiso DBB-200Si	74	124	91	141	± 30 ml/h*	≥ 20 (Nikkiso)	Japon
Nipro Surdial-X and DX	132	231	149	248	± 30 ml/h	≥ 30 (CE, FDA)	Australie, CE, Japon, USA

Review > Pediatr Nephrol. 2023 Dec 23. doi: 10.1007/s00467-023-06233-0. Online ahead of print.

Technical requirements and devices available for long-term hemodialysis in children-mind the gap!

Bruno Ranchin ^{1 2}, Claus Peter Schmitt ³, Bradley A Warady ⁴, Hiroshi Hataya ^{5 6}, Joanne Jones ⁷, Rowena Lalji ^{8 9 10}, Christoph Licht ^{11 12}, Melodie Mosca ¹³, Lynsey Stronach ¹⁴, Enrico Vidal ¹⁵, Johan Vande Walle ¹⁶, Rukshana Shroff ¹⁴

CE: <u>Communauté Européenne</u>; FDA: US Food and Drug Administration; Fresenius Medical Care AG & Co., Bad Homburg <u>vor</u> der <u>Höhe</u>, <u>Allemagne</u>; Nikkiso Co., Tokyo, <u>Japon</u>; Baxter Healthcare, Deerfield, *Illinois*, USA; B. Braun <u>Avitum</u> AG <u>Melsungen</u>, <u>Allemagne</u>; <u>Nipro</u> corporation, Osaka, <u>Japon</u>; Medtronic, Dublin, <u>Irlande</u>

^{*}Avec un debit dialysat de 300-500ml/min, **ou ±2.5% du volume cumulé d'UF, selon ce qui est le plus important.

Challenge : défi de l'épuration

Pediatr Nephrol. 2014; 29(10): 1873–1881. Published online 2014 Aug 15. doi: 10.1007/s00467-014-2923-3 D: PM

Haemodialysing babies weighing <8 kg with the Newcastle infant dialysis and ultrafiltration system (Nidus): comparison with peritoneal and conventional haemodialysis

Malcolm G. Coulthard, ^{11,6} Jean Crosier, ¹ Clive Griffiths, ² Jon Smith, ³ Michael Drinnan, ² Mike Whitaker, ² Robert Beckwith, ² John N. S. Matthews, ⁴ Paul Flecknell, ⁵ and Heather J. Lambert

NIDUS

Newcastle Infant Dialysis and Ultrafiltration System

- Nouveau-nés et nourrissons < 10 kg (800g 8 kg)
- Système de seringues monovoie
- Volume total du circuit de 5 à 12,5 ml
- Volume d'amorçage 9,3 ml
- Catheter simple voie

Lancet. 2014 May 24;383(9931):1807-13. doi: 10.1016/S0140-6736(14)60799-6.

Continuous renal replacement therapy in neonates and small infants: development and first-in-human use of a miniaturised machine (CARPEDIEM)

Claudio Ronco ¹, Francesco Garzotto ², Alessandra Brendolan ², Monica Zanella ²,

C.A.R.PE.DI.E.M.

Cardio-Renal Pediatric Dialysis Emergency Machine

- Nouveau-nés et nourrissons < 10 kg (2,5-9,9 Kg)
- Pompe à sang miniaturisée
- Volume total du circuit de 27 à 41 ml
- Volume d'amorçage (30 ml)
- Catheters double voie 4,5Fr, 5Fr, 6,5Fr ou 2 catheters simple voie

Challenge : défi de l'épuration

Dialyse péritonéale manuelle

Challenge: nutrition et diététique

• Evolution constante des besoins selon l'âge

	Protéines	Lipides	Glucides
0-1 an	7 à 15%	50 à 55 % de 0 à 6 mois puis 45 - 50 % à 1 an	40 à 50 %
1-3 ans	6 à 15%	45 à 50 %	40 à 50 %
3-5 ans	6 à 16%		
6-9 ans	7 à 17%	⊿jusqu'à 35 à 40 %	
10-13 ans	9 à 19%	chez l'adulte	chez l'adolescent
14-17 ans	10 à 20%		

Besoins	Ca2+ (mg)
0-6 mois	400 mg
6-12 mois	500 mg
1 - 3 ans	450 mg
4 - 10 ans	800 mg
11 - 17 ans	1150 - 2000 mg

recommandations ANSES (Mars 2021)

Challenge: nutrition et diététique

• Evolution constante des besoins selon l'âge

	Protéines	Lipides	Glucides
0-1 an	7 à 15%	50 à 55 % de 0 à 6 mois puis 45 - 50 % à 1 an	40 à 50 %
1-3 ans	6 à 15%	45 à 50 %	40 à 50 %
3-5 ans	6 à 16%		
6-9 ans	7 à 17%	⊿jusqu'à 35 à 40 %	
10-13 ans	9 à 19%	chez l'adulte	chez l'adolescent
14-17 ans	10 à 20%		

Besoins	Ca2+ (mg)
0-6 mois	400 mg
6-12 mois	500 mg
1 - 3 ans	450 mg
4 - 10 ans	800 mg
11 - 17 ans	1150 - 2000 mg

recommandations ANSES (Mars 2021)

Alimentation de l'enfant :

- croissance staturo-pondérale
- développement psychomoteur de l'enfant
- habitudes et hygiène alimentaires

Âge	Prise de poids (moyenne g/j)
3 mois	25
6 mois	20
9 - 12 mois	13
15 - 36 mois	6
4 - 8 ans	6
9 - 11 ans	9
12 - 15 ans	13
16 - 18 ans	5

Sources: PNNS/ANSES/HAS

Adaptation permanente de la nutrition

- Calcul des apports continu
- <u>Chez les petits</u>: mise en place de nutrition entérale (50 à 100% des apports)

Maintien de l'oralité ++

Protéines : 1,8 g/kg à 2 g/kg (7% de l' \triangle ET (P \triangle /PV \geq 1) Minéraux :

Sodium: 0,3 à 1 mmoles/kg + pertes urinaires

Potassium: 1,5 à 2 mmol/kg

Phosphore: minimum

Eau: 30 ml/kg/j (pertes insensibles) + diurèse résiduelle

Energie:

- Normocalorique (sauf dénutrition)
- Calcium: apports normaux (suppléments indispensables)

Take home message

Amélioration du dépistage et du diagnostic néonatal

Développement de l'offre de soin: nouveaux traitements et nouvelles modalités thérapeutiques

Personnalisation du parcours de soin et décision partagée avec les patients et leurs familles

Equipe pluridisciplinaire

• Toujours penser à la prochaine greffe...